(416) 786-1375 | taheer.khan@torontomu.ca | https://github.com/taheer6

Education

Toronto Metropolitan University (Formerly Ryerson)

Bachelors of Engineering (Computer Engineering)

2022-2027 Toronto, ON

Relevant Courses: Digital Systems, Electric Circuit Analysis & Design, Signal and Systems, Data Structures & Algorithms, Object Oriented Programming, Control Systems (ongoing)

TECHNICAL SKILLS

Languages: C/C++, VHDL/Verilog, Java, Python, Matlab, JavaScript, HTML/CSS Technologies/Tools: MultiSim, Quartus, Microchip Studio, KiCad, Git, Matplotlib, JavaFX Hardware: AVR MCU, ARM MCU, FPGA, Arduino

Projects

AC Signal Generator and Oscilloscope | C, Python, MatPlotlib, MultiSim, Microchip Studio, KiCad, ATM328p

- Developed an oscilloscope using the ATmega328P microcontroller and Python's matplotlib library, enabling real-time visualization of analog signals via UART communication, allowing efficient data transfer.
- Designed a function generator circuit capable of generating square, triangle, and sine signals with adjustable frequency by applying key signal conditioning stages, including a **comparator**, **integrator**, **wave shaper**, and **amplifier**.
- Designed custom PCB boards for both the oscilloscope and function generator circuits using **KiCad**, enabling compact layouts and significantly enhancing circuit reliability and performance

Central Processing Unit | VHDL, Quartus

- Developed three custom CPUs using VHDL and FPGA, integrating logic units such as decoders, FSMs, and flip-flops, to enhance processing for operations such as arithmetic, logic functions, parity checking, and bit rotation.
- Improved processing accuracy by implementing **ALU cores** that modify inputs and execute Boolean functions, displayed via **seven-segment display**, resulting in enhanced operational flexibility.
- Constructed a **Mealy FSM** and a **4:16 decoder** to control ALU operations, increasing the CPUs' flexibility to handle multiple operations, such as input comparisons and arithmetic checks, improving processor functionality.

GoPro Gimbal | SolidWorks, Arduino, I2C, MPU-6050

- Designed a two-axis gimbal system for drone stabilization using **SolidWorks**. Incorporated a PS2 controller joystick for manual camera planning.
- Implemented I2C communication between the MPU6050 and Arduino using the Wire.h library and utilized MPU6050 datasheets to interpret gyroscope and accelerometer data, calculating movements in degrees per second.

Cascaded BJT Amplifier Design | Multisim

- Designed a multi-stage **BJT amplifier** in **MultiSim** by cascading Common-Emitter and Common-Collector stages, achieving efficient signal amplification
- Simulated and analyzed circuit performance using **DC sweep** and frequency response in MultiSim, verifying **gain**, **bandwidth**, and **distortion** to ensure stability under varying operating conditions.

Banking Application GUI | Java, JavaFX

- Developed a banking application with secure login verification for clients and admins, using **Java**, to support banking transactions including deposits, withdrawals, and balance checks.
- Designed a User Interface using **JavaFX**, enhancing a seamless user experience through responsiveness and a visually appealing layout.

WORK EXPERIENCE

Toronto Met. Baja Racing

Electrical/Powertrain

- Helped engineer the vehicle telemetry systems, contributing to real-time data transmission of performance to a digital dashboard, which enhanced vehicle diagnostics
- Assisted in the research and construction of critical vehicle circuitry, such as spark plugs and kill switches, ensuring safe operation and improving electrical control and reliability.

Sept 2024 – Current Toronto, ON